首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26093篇
  免费   5451篇
  国内免费   8039篇
测绘学   369篇
大气科学   4117篇
地球物理   4138篇
地质学   16882篇
海洋学   6813篇
天文学   76篇
综合类   1505篇
自然地理   5683篇
  2024年   70篇
  2023年   406篇
  2022年   1093篇
  2021年   1209篇
  2020年   1186篇
  2019年   1422篇
  2018年   1273篇
  2017年   1395篇
  2016年   1429篇
  2015年   1391篇
  2014年   1869篇
  2013年   1871篇
  2012年   1740篇
  2011年   1839篇
  2010年   1448篇
  2009年   1991篇
  2008年   1814篇
  2007年   1933篇
  2006年   1742篇
  2005年   1603篇
  2004年   1449篇
  2003年   1295篇
  2002年   1205篇
  2001年   939篇
  2000年   930篇
  1999年   893篇
  1998年   660篇
  1997年   663篇
  1996年   549篇
  1995年   447篇
  1994年   433篇
  1993年   333篇
  1992年   291篇
  1991年   213篇
  1990年   127篇
  1989年   129篇
  1988年   86篇
  1987年   54篇
  1986年   29篇
  1985年   28篇
  1984年   22篇
  1983年   17篇
  1982年   16篇
  1981年   18篇
  1980年   6篇
  1979年   10篇
  1978年   7篇
  1977年   1篇
  1954年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
潍坊市北部的寿光、寒亭、昌邑等沿海地区,80年代初期就已形成地下水水位下降漏斗,导致海咸水对淡水含水层的入侵.本文根据监测资料,对该区海咸水入侵发展现状、危害程度及形成原因进行了探讨,并提出了防治对策.  相似文献   
62.
利用断层相关褶皱的构造几何分析方法,对准噶尔盆地南缘山前复杂构造带内基于地震剖面进行了构造解析,搭建了中、东段的构造轮廓和构造组合样式,认为东段阜康断裂带主要表现为至地表的推覆逆掩。由于位移量大部分转移至地表,阜康断裂带的前陆部分无喜山期构造带;西段造山带内的挤压往前陆方向传递过程中以前列式不断释放其位移量,造成在纵向上呈现三排主要的断层相关褶皱带。根据正演平衡地质剖面制作技术对山前复杂构造区地震剖面反射波的构造识别进行了模拟与探讨。  相似文献   
63.
The Donghetang Formation (Upper Devonian) in central Tarim Basin has been thought an important oil and gas reservoir since the abundant oil and gas resources were found in the wells W16, W20, W34, and other fields. However, the sedimentary environment of the Donghetang Formation has been disputed because it suffered from both tidal and fluvial actions and there were not rich fossils in the sandstone. After the authors analyzed sedimentary features by means of drill cores, well logging data, paleosols, and with SEM obseruations, three kinds of sedimentary environments were distinguished: alluvial fan, tide-dominated estuary, and shelf. Particularly, the sedimentary features of tide-dominated estuary were studied in detail. Besides, the authors discussed sedimentary characteristics of the Donghetang Formation which was divided into two fourth-order sequences and five system tracts. At the same time, according to the forming process of five system tracts, the whole vertical evolution and lateral transition of tide-dominated estuary were illustrated clearly. Finally, the reservoir quality was evaluated based on porosity and permeability.  相似文献   
64.
Detailed grain-size analyses, both in China and western Europe, indicate the occurrence of short climatic cycles during loess deposition of the last glacial. Cold episodes coincided with enhanced deposition of relatively coarse loess and alternated with relatively warmer episodes with decreased deposition of finer loess and soil formation. In Europe, these oscillations may coincide with alternations of permafrost development and degradation. The short-term climatic events in the loess sections are similar to the Dansgaard–Oeschger events in ice-core records.  相似文献   
65.
熊耳群为玄武粗安岩-英安流纹岩组合,大红口组为粗面岩组合,属B类的过渡型拉斑玄武岩浆系列,具以太华群为岩浆房的壳幔混染型成因;秦岭群和宽坪群为变拉斑玄武岩建造,属A类拉斑玄武岩浆系列,具幔源型成因;二郎坪群和丹凤群属细碧岩-石英角斑岩建造,C类石英角斑岩浆系列与A类拉斑玄武岩浆系列共存,具壳幔双层混合型成因。  相似文献   
66.
On the basis of the study on areal differentiation of the natural environment of oasis agriculture ecosystems in the Shiyang River Basin, this paper comparatively analyzes the natural productivities, water economic benefits, production efficiency, ecological stabilities and developmental conditions of the Wuwei Oasis agricultural ecosystem in the middle reaches of the river basin and the Minqin Oasis agricultural ecosystem in the lower reaches. Under a same management level and investment of . material and energy, primary productiveness and economic benefits of the former are higher than those of the latter. Construction directions of Wuwei and Minqin oases should be different in order to alleviate the water- use contradiction between the middle and lower reaches. The construction objective of Wuwei Oasis should be efficient irrigated farming production system and Minqin Oasis should become a mixed forestry-pastoral-farming ecosystem taking ecological protection as its major function.  相似文献   
67.
Based on the MASNUM wave-tide-circulation coupled numerical model, the temperature structure along 35°N in the Yellow Sea was simulated and compared with the observations. One of the notable features of the temperature structure along 35°N section is the double cold cores phenomena during spring and summer. The double cold cores refer to the two cold water centers located near 122°E and 125°E from the depth of 30m to bottom. The formation, maintenance and disappearance of the double cold cores are discussed. At least two reasons make the temperature in the center (near 123°E) of the section higher than that near the west and east shores in winter. One reason is that the water there is deeper than the west and east sides so its heat content is higher. The other is invasion of the warm water brought by the Yellow Sea Warm Current (YSWC) during winter. This temperature pattern of the lower layer (from 30m to bottom) is maintained through spring and summer when the upper layer (0 to 30m) is heated and strong thermocline is formed. Large zonal span of the 35°N section (about 600 km) makes the cold cores have more opportunity to survive. The double cold cores phenomena disappears in early autumn when the west cold core vanishes first with the dropping of the thermocline position. Supported by the National Basic Research Program of China (No. G1999043809) and the National Science Foundation of China (No. 49736190).  相似文献   
68.
Abstract Eclogites are distributed for more than 500 km along a major tectonic boundary between the Sino-Korean and Yangtze cratons in central and eastern China. These eclogites usually have high-P assemblages including omphacite + kyanite and/or coesite (or its pseudomorph), and form a high-P eclogite terrane. They occur as isolated lenses or blocks 10 cm to 300 m long in gneisses (Type I), serpentinized garnet peridotites (Type II) and marbles (Type III). Type I eclogites were formed by prograde metamorphism, and their primary metamorphic mineral assemblage consists mainly of garnet [pyrope (Prp) = 15–40 mol%], omphacite [jadeite (Jd) = 34–64 mol%], pargasitic amphibole, kyanite, phengitic muscovite, zoisite, an SiO2 phase, apatite, rutile and zircon. Type II eclogites characteristically contain no SiO2 phase, and are divided into prograde eclogites and mantle-derived eclogites. The prograde eclogites of Type II are petrographically similar to Type I eclogites. The mantle-derived eclogites have high MgO/(FeO + Fe2O3) and Cr2O3 compositions in bulk rock and minerals, and consist mainly of pyrope-rich garnet (Prp = 48–60 mol%), sodic augite (Jd = 10–27 mol%) and rutile. Type III eclogites have an unusual mineral assemblage of grossular-rich (Grs = 57 mol%) garnet + omphacite (Jd = 30–34 mol%) + pargasite + rutile. Pargasitic and taramitic amphiboles, calcic plagioclase (An68), epidote, zoisite, K-feldspar and paragonite occur as inclusions in garnet and omphacite in the prograde eclogites. This suggests that the prograde eclogites were formed by recrystallization of epidote amphibolite and/or amphibolite facies rocks with near-isothermal compression reflecting crustal thickening during continent–continent collision of late Proterozoic age. Equilibrium conditions of the prograde eclogites range from P > 26 kbar and T= 500–750°C in the western part to P > 28 kbar and T= 810–880°C in the eastern part of the high-P eclogite terrane. The prograde eclogites in the eastern part are considered to have been derived from a deeper position than those in the western part. Subsequent reactions, manifested by (1) narrow rims of sodic plagioclase or paragonite on kyanite and (2) symplectites between omphacite and quartz are interpreted as an effect of near-isothermal decompression during the retrograde stage. The conditions at which symplectites re-equilibrated tend to increase from west (P < 10 kbar and T < 580°C) to east (P > 9 kbar and T > 680°C). Equilibrium temperatures of Type II mantle-derived eclogites and Type III eclogite are 730–750°C and 680°C, respectively.  相似文献   
69.
THECONSTRUCTIONANDITSDEVELOPMENTOFTHEOVERSEASTRANSPORTSYSTEMINNORTHEASTCHINAGaoShali(高莎丽)(DepartmentofGeography,NortheastNorm...  相似文献   
70.
The sand–loess transition zone in north China is sensitive to climate change, and is an ideal place to investigate past environmental changes. However, past climate change at millennial–centennial timescales in this region has not been well reconstructed because of limited numerical dating. Alternations of sandy loam soils with aeolian sand layers in the Mu Us and Otindag sand fields, which lie along the sand–loess transition zone, indicate multiple intervals of dune activity and stability. This change is probably a response to variations of the East Asian monsoon climate during the late Quaternary. The single aliquot regeneration (SAR) optically stimulated luminescence (OSL) dating protocol, which has been successfully applied to aeolian deposits worldwide, is applied to these two sand fields in this study. The OSL ages provide reliable constraints for reconstruction of past climate changes at suborbital timescale. Sections in both sand fields contain aeolian sand beds recording millennial‐scale episodes of dry climate and widespread dune activation, including episodes at about the same time as Heinrich Event 5 and the Younger Dryas in the North Atlantic region. These results demonstrate the potential of aeolian sediments in semi‐arid north China to record millennial‐scale climatic events, and also suggest that dry–wet climate variation at the desert margin in China may be linked to climatic change elsewhere in the Northern Hemisphere, through atmospheric circulation. This article was published online on 27 November 2008. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected (16 December 2008). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号